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Self-diffusion of interacting Brownian particles in a plane 

B Cichockit and B U Felderhof 
Institut fiir Theoretische Physik A, RWTH Aachen, Templergraben 55,52056 Aachen, Germany 

Received 17 May 1994 

Abstraa We study selfdiffusion of interacting Brownian particles confined to a plane. The 
system is idealized as a set of discs interdng via a pair potential. We analyse the time- 
dependent mean square displacement of a selected disc. For long times the displacement 
gmws linearly with time. and this defines the long-time self-diffusion coefficied but there me 
important logarithmic correction terms. We present an exact expression for the time-dependent 
displacement in a semidilute suspension of discs with square-well interaction, An appmximte 
expression is proposed which should be valid at any concentration for systems with repulsive 
interadion. The approximation is characterized by a small number of paryneters which in 
prinaple can he detemdned h m  experimental or computer-simulation data 

1. Introduction 

Transport phenomena in two dimensions show characteristic differences from their three- 
dimensional counterparts. In this paper we study Brownian motion of particles confined 
to a plane. Experimentally this may correspond to diffusion of particles adsorbed on a 
surface, or to Brownian particles immersed in a fluid bounded by two parallel plates [ 1, 21. 
Computer simulations have been performed on systems of hard discs [3], and on discs with 
Yukawa interaction [4]. 

We study in particular the timedependent self-diffusion of a selected particle. The 
mean square displacement grows linearly with time at long times, and this defines the long- 
time self-diffusion coefficient D;, but in two dimensions there are characteristic logarithmic 
correction terms. The corrections are appreciable, and make it difficult to determine Dk 
from the data. A theoretical expression is needed which allows reliable determination of 
Dk from data in the intermediate-time regime. A study of the exact expression for the mean 
square displacement derived by Ackerson and Fleishman [5 ]  for a semidilute suspension of 
hard discs reveals the nature of the correction terms to the long-time asymptote. We extend 
the analysis to a semidilute suspension of discs with squarewell interaction to see how the 
time dependence depends on the nature of the interaction. 

We show for a semidilute suspension with general pair interaction that the important 
parameters characterizing the mean square displacement may be determined from the 
steady-state density perturbation created by a constant force acting on the selected particle. 
The same method works at higher concentration, if a diffusion-type evolution equation 
for the pair distribution function is adopted. We propose an approximate expression 
for the Laplace eansform of the memory function involving the same parameters. A 
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comparison with the exact result for a semidilute suspension with square-step interaction 
shows that the approximation works well for systems with repulsive interaction. The 
approximation captures the essential features of the time dependence of BrowNan motion 
in two dimensions. It should describe the mean square displacement over a wide time range 
for systems at any concentration. 

2. Self-diffusion coefficient 

We consider N identical circular discs of radius a performing Brownian motion in the plane. 
A wall potential confines the discs to an area of size C. The bare diffusion coefficient of a 
disc is denoted as DO. The diffusion is hindered due to interactions between the discs. In the 
simplest case there is a hard interaction potential preventing the discs &om overlaping. More 
generally, we consider a pair potential u(r)  depending only on the distance r between the 
two centres. If Ri denotes the position of the centre of the ith disc, then the configuration 
of the whole set may be described by the 2N-dimensional vector X = ( R I ,  . . . , RN).  The 
dynamical evolution of the configuration X is assumed to be described by a timedependent 
probability distribution P(X, t ) ,  which obeys the generalized Smoluchowski equation [6]. 
In the course of time the distribution function P(X, t )  tends to the equilibrium distribution 

where f3 = I/keT, the potential @(X) incorporates both the wall potential and the pair 
interactions, and the partition function Z(B) normalizes the distribution to unity. We shall 
consider self-diffusion of a selected disc in the thermodynamic limit N + 00, C -+ 00 at 
constant n = N I X .  

The self-diffusion coefficient is defined &om the mean square displacement of the 
selected particle, labelled 1, 

(2) 
where the time dependence of the position RI is governed by the adjoint Smoluchowski 
operator 1: such that = (expLt)Rl(O), with Rl(0) = R , ,  and the angle brackets 
denote an average over the equilibrium distribution (I). The thermodynamic limit is implied. 
The timedependent diffusion coefficient Ds(t)  is defined as the derivative 
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P,(X) = exp1-b @(X)l/Z(b) (1) 

W ( 0  = a ([RI 0) - RI (O)J2) 

It may be expressed as 
I 

Ds(t)  = 0: + 1 Ms(t’) dt’ (4) 

where @ is the short-time diffusion coefficient and M s ( t )  is the memory function. For the 
model under consideration, which does not include ‘hydrodynamic interactions’, the short- 
time coefficient Dl simply equals the bare diffusion coefficient Do. The memory function 
Ms(r) arises due to the interactions between discs. 

The time dependence of the diffusion coefficient Ds(t)  is dominated by the behaviour 
at long times. It is therefore more convenient to write 

(5) 
where Dk is the longtime self-diffusion coefficient, and the relaxation function ps(t) is 
related to the memory function by 

pS( t )  = - Ms(t’) dt’. (6) 

&dt) = D; + ~ ( t )  

m 
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The long-time coefficient 0 k  may in principle be obtained from a steady-state calculation, ih 
which one considers the linear response to a constant force applied to the selected disc. The 
relaxation function p s ( t )  describes the relaxation to the steady state. In two-dimensional 
diffusion the relaxation is exuemely slow. 

The mean square displacement may be expressed as 

It follows from the exact calculation by Ackerson and Fleishman [5] for a semidilute system 
of hard discs that for long times the relaxation function p&) decays as l / t .  The mean 
square displacement therefore behaves for large t as 

where r L  and r M  are typical time scales. The l / t  singularity of the relaxation function is 
characteristic of Brownian motion in two dimensions. Therefore the behaviour (8) holds 
also for a system of hard discs at any concentration, as well as for systems with different 
interactions. The coefficient 0; and the relaxation times rL and ?M depend of course on 
the nature of the interactions, and on the concentration. 

3. Analysis of mean square displacement data 

In the following we shall derive theoretical expressions for the coefficient 0; and the time 
scales rL and t M  for semidilute dispersions of discs. In this section we discuss how the 
coefficient 0; and the time scales q, and r~ may be determined from data obtained in 
experiment or simulation. 

The theoretical expression (8) shows that the approach of the ratio 

to the long-time value 0; is extremely slow, with a long-time tail proportional to Int l t .  
Therefore in experiments and in simulations it will be difficult to determine the coefficient 
DL from the value of &(t) at long times. However, both the long-time diffusion coefficient 

times, if we assume that the time dependence of the mean square displacement is indeed 
dominated by the long-time expression (8). A similar analysis was used in three dimensions 
by Cichocki and Hinsen [7]. 

We choose a fixed intermediate time fl. It follows from equation (8) that the behaviour 
of the ratio R(t ,  tl). defined by 

Os t and the time scales ?L and ?M can be determined from the behaviour at intermediate 

is given by 

This suggests that if the ratio R(t ,  t l ) ,  as found from experiment or simulation, is plotted 
as a function of the variable 
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then the graph should tend to a straight line as 1 tends to zero. The intercept of the 
asymptote with the ordinate axis gives the long-time diffusion coefficient Dk. The slope 
of the asymptote gives the time scale TL. We assume that the short-time self-diffusion 
coefficient L$ either equals DO. as valid in the absence of hydrodynamic interactions, or is 
calculated or measured separately. Finally the time scale TM in principle can be determined 
from the asymptotic constant value of the difference 

B Cichocki a d  B U Felderhqf 

~ ( t )  = w(t) - Dkt - (D: - ~ , L ) t ~ ~ n t .  (13) 

However, this requires very good dab. 
We demonstrate for a semidilute system of hard discs that the longtime expression (8) 

provides a good approximation over a wide range. To first order in density, the long-time 
diffusion coefficient of hard discs is given by [5] 

D,L = Do[l - 2@] (14) 

where @ = znaZ is the fraction of the plane covered by discs. From the Laplace transform 
of the diffusion coefficient Ds(t) ,  as given by Ackerson and Fleishman [5 ] ,  we find 
by use of a Taukrian theorem 181 the time scale TL = TO, where Q = a2/Do is the 
diffusion time for a single disc. Correspondingly the relaxation function has asymptotic 
behaviour @s(f) Y 2az@/t for large t. The function decays to zero from the initial 
value ps(0) = 2900. Ackerson and Fleishman’s conjecture [5] concerning. the long-time 
behaviour was incorrect. In figure 1 we plot the reduced function ys( t )  = p ~ ( t ) / 2 @ D o  
as a function of T = t/ro, and compare with the long-time behaviour ~ ( s )  N 1/r. It is 
evident that the exact function, as calculated from the inverse Laplace transform, rapidly 
tends to the long-time behaviour. In figure 2 we plot the ratio R( t ,  f l ) .  defined in equation 
(lo), for 4 = 0.2 and fl = 10~0, as a function of the variable I, defined in equation 
(12), and compare with the asymptotic behaviour given by equation (11). It is evident that 
the diffusion coefficient Dk and the time scale TL can be determined accurately from the 
plot. We remark that the long-time behaviour of the function &(f) is given incorrectly 

l . ,  I . . . . . .  

0 2 I 8 8 10 12 14 15 18 20 

I 

Figure 1. Reduced reladon function ~ ( r )  = 
&&)/Z)Do as a function of r = Dor/o’ for a 
semidilute dispersion of hard discs of radius a and 
diffusion coefficient Do at m fraction 9. We compare 
the exact function (fuU curve) with the long-time 
behaviour M ( r )  IT I/r  (dashed curve). 

Figure 2. Plot ofthe ratio R ( f .  fl). defined in equation 
(10). as a function of the variable I ,  defined in quadon 
(12). for a semidilute dispersion of hard discs at area 
fraction q5 = 0.2 and for 11 = IO*. 
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in equation (21) of [4]. The fit to the simulation data for the two-dimensional Yukawa fluid 
should be based on equation (8). rather than the expression (22) of UIwen 141. 

4. Laplace transform 

In this section we indicate how the coefficient 0: and the time scales g and are related 
to properties of the Laplace transform of the relaxation function. The long-time behaviour of 
the relaxation function corresponds to the low-frequency behaviour of its one-sided Fourier 
transform 

i s ( @ )  = e'" ps0) dt. (15) 
m 

equation (8) implies the limiting behavioni 

Inserting a factor exp(iwf') with o = Of in the integrand, and interchanging limits we 
obtain 

lim [riLs(o) - (0: - @)e exp(-iosM)El (-iorM)] = o (17) 
-0 

where E , ( z )  is the exponential integral [9]. This implies the low-frequency behaviour 

&do) = -(D: - ok)rL[ln(-iosM) + VI + 0(1) (18) 

where y is Euler's constant. 
We write the relaxation function as 

p s W  = (0: -  d. (19) 

It follows from the general properties of the Smoluchowski equation that the dimensionless 
function %(T) may be expressed as 

~ ( s )  = lm ps(u)e"' du (W 
with a positive specaal density ps(u) which has been normalized to 

m 
PS(U) du = 1. (21) 

The relaxation function decays monotonically with time. Its Fourier transform may be 
expressed as 

(22) Ps(o) = (0: - 0,")~ r s ( z )  
where rs(z) is the Laplace transform of the function ys(s) 

m 
h ( z )  = 1 e-" rsW dr  (23) 

with the variable z = -ion. Substituting equation (20) we find that rs(z) is given by the 
Stieltjes integral 
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Thus Ps(z) is analytic in the complex z plane with a branch cut along the negative real 
axis. From the normalization (21) it follows that 

a S Z + o O .  (3) 
1 
Z 

B Cichocki a& B U Felderhof 

rs(z) N - 
From the low-frequency behaviour (18) it follows that rs (z )  behaves for small z as 

h ( z )  Y -CLlnz as z + 0 (26) 

SL = CLB. (27) 

PS(O+) = CL. (28) 

where the coefficient CL is defined by 

Correspondingly the spectral density tends to a constant for small U 

Hence it follows that the coefficient CL is always positive. From the Tauberian theorem [8] 
it follows that the relaxation function ys(r)  decays as CL/T for large 5. 

More precisely, equation (18) shows that for small z 

rsw = -cL[McMz) + YI + o(1) 
with the coefficient CM defined by SM = CMSO. Using the identity 

(29) 

and the expansion of the exponential integral [9], we find from equations (24) and (29) the 
sum rule 

du = O .  (31) 
l- P W  - CL exP(-CM4 

U 
The expression (29) allows determination of the coefficients CL and C, from the behaviour 
of rs(z) for small z. 

5. Semidilute suspension with square-well interaction 

It is of interest to investigate how the coefficients Dk, CL, and CM depend on the nature 
of the interactions. For a semidilute suspension of discs with hard core and squarewell 
interactions these quantities, as well as the complete spectral density p ~ ( u ) ,  can be calculated 
explicitly. The calculation is quite analogous to that for spheres [lo]. 

The general expression for the memory function is [ll, 121 
.&(o) = 4 (U', . (io + c.)-'u{ ) (32) 

where C. is the adjoint of the Smoluchowski operator, and U', = LRI is the velocity of the 
selected particle on the Smoluchowslri time scale [131. To first order, in density we write 

with a dimensionless coefficient as(@) which may be found from the solution of the pair 
Smoluchowski equation. The corresponding expression for the Laplace transform rs(z) is 

= Do~rslo)) (33) 

The coefficient us(o) may be evaluated from a one-dimensional integral 
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where x = r /2a  is the dimensionless pair distance, and g ( x )  is the low-density radial 
distribution function 

g(x )  = exp[-B ~ ( 2 4 1  (36) 
for interaction potential v(r) .  Furthermore, f ( x )  is the radial part of the perturbed pair 
distribution function, and V ( x )  is a given function expressed in terms of the interactions. 
In the absence of hydrodynamic interactions f ( x )  satisfies the radial differential equation 

with the variable 

a’ = -2ioa2/Do = -2iwro. (38) 
For vanishing hydrodynamic interaction the function V ( x )  is given by 

In the following we consider specifically the square-well potential 

oo for 0 < r < 2a 
for 2a c r < 2b 
for 2b < r. 

(40) 

The depth -u1 may be positive as well as negative. We shall use the dimensionless 
parameters 

E = exp(-p V I )  XI = b/u. (41) 

IysIw) = E f(l+) - (6 - 1)Xl f(x1). (42) 

The function g ( x )  is constant on each of the intervals 1 < x < X I  and XI c x c 00, so that 
the coefficient ~ ( m )  is given by 

On each interval the right-hand side of equation (37) vanishes. The zero-flux condition at 
r = 2a corresponds to the boundary condition f‘(l+) = 2. At x = XI the function f ( x )  
must satisfy the jump conditions 

fh+) = fh-) 
-2 + j ’ ( X l + )  = -2E + E f’(q-). 

Also it must tend to zero at infinity. 
We consider first the case of hard discs. Then E = 1 and the solution is [5] 

(43) 

where K l ( z )  is a modified Bessel function [9]. We define LY such that cx = (1 -i)(moz/D~)lfi 
for w z 0. The coefficient a&) is 

In the limit of zero frequency this yields cus(0) = -2. From equation (34) we find for the 
Laplace transform r s ( z )  
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At low frequency r s ( z )  N -21n(u, which confirms the value C, = 1 by comparison with 
equation (26), since z = ;d. In addition we find C, = exp(y) = 0.89054. Furthermore, 
it is evident that rs(z) N 2/aZ for large z ,  in agreement with equation (25). The spectral 
density ps(u), corresponding to the Laplace transform rs(z)  according to equation (24). is 
given by 

B Cichocki Md B U Felderhof 

with the abbreviations 

Z ( U )  = J;(u) + i Y;(IJ) U = Jz; (48) 
where Jl(u) and YI(u)  are Bessel functions. In figure 3 we plot the spectral density as a 
function of log,, U. In the l i t  of zero frequency the distribution function becomes 

(49) 
2 

f'O'(x) = -- x > 1 (W 
X 

which shows an extremely slow decay with distance. 

Figure 3. Plot of the s p e ~ w l  dens@ ps(u) as a 
function of loglo U for a semidilute dispenion of hard 
dim. 

Figure 4. Plot of the mefficient ado), as given by 
equation @9), for a semidilute dispersion of discs with 
square-well interaction. We plot q(0) as a lunction of 
the parameter e for Fued p = 15. 

In the more general case of a square-well potential with U( # 0 we can write the solution 

(50) 

where Z , ( Z )  is the regular modified Bessel function. The coefficients arc found from the 
boundary condition f'(l+) = 2 and the jump conditions (43). The coefficient as(@) is 
written conveniently with the parameter 

1 
{ = - - I .  

of equation (37) in the form 

f ( x )  = AI Zl(0rx) + B1 K l ( a x )  
f ( x )  = Bz KI ( a x )  

for 1 4 x < X I  
for x1 < x < 03 

(51) 
E 

The explicit expression reads 



with the notation of equation (48) and the abbreviation 

Y(U,Xl) = ~nuxl[Jl(uxl)Y;(u) - q u ~ Y l ~ u ~ l ~ l .  (55) 
The coefficient as(0) is always negative. For hard discs it takes the value -2, and in 

the case of a square well its value can be found from equation (52). The long-time diffusion 
coefficient is given to fist order in density by 

D,L = Doll +as(O)#I. (56) 

In the next two sections we derive compact expressions for the coefficients &O), CL, and 
CM. 

6. Steady-state distribution 

We have shown previously [I41 that for semidilute suspensions of spheres the important 
parameters characterizing the relaxation process can be obtained from the steady-state pair 
distribution function. Here we show that the same is hue for suspensions of discs. The 
method allows determination of the parameters also in dense suspensions, on the basis of 
an approximate calculation of the steady-state pair distribution. 

The radial differential equation (37) may be written in the abbreviated form 

[.c, - aZ1f = u (57) 

with the operator 

From equation (39) it follows that the function U ( x )  is given by 

U ( x )  = 2cx x .  (59) 

Introducing the scalar product 
OD 

(AIB) = xgA'B dx 
J o  

we may write the coefficient a&) formally as 

The operator Cz is Hermitian with respect to the scalar product (60). 
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The steady-state coefficient as(0) may be calculated from the solution f “ ( x )  of the 

(62) 
and the corresponding integral (35). As in the three-dimensional case, equation (62) can 
be related to a dielectric problem [12], and the coefficient as(0) can be calculated from the 
corresponding electric polarizability ap = spaZ according to the relation 

(63) 

equation 

CJ f (0) = U 

ado) = Bp + Js 
where Sp is twice the coefficient of the asymptotic decay of the steady-state distribution 

f(O) ( x )  Y - Bp asx-+cQ 2x 
and JS is given by the integral 

It follows from the long range of the distribution function that the integral ( U l ~ 2 ; ~ l U )  
diverges. Thin implies that the coefficient as(o), as given by equation (61). is non-analytic 
in a’. The explicit form equation (44) for hard discs suggests that we expand the solution 
f ( x ,  a) of equation (37) as 

f ( x ,  a) = f (O)(x)  + f (” (x )a*  h a  + f@)(x)a’ + O((azIna)’). 

as(o) = as(0) -I a$) a’  no! + as (2) a 2 + ~( (a ’  In a)’). 

(66) 

(67) 

The coefficient ai1) may be related to the time r ~ ,  and the coefficient a:) may be related 
to the time rM. From equations (29) and (34) we find 

It follows from equation (35) that the coefficient as(o) has the corresponding expansion 

It follows from equation (59) that the solution f @ ) ( x )  of the static equation (62) may 

. c , f o = O  (69) 

f Y x )  = fo(x) + 2r. (70) 
In order that f ( ’ ) (x)  vanish at infinity we must select the solution of equation (69) that 
tends to -2r at large x. Since g(x)  tends to unity at large x the function f&) has the 
asymptotic behaviour 

be related to the solution f&) of the homogeneous equation 

according to 

(71) BP f&) z -2r + - 
2r 

in agreement with equation (64). 
We assume for simplicity that the radial distribution g ( x )  equals unity beyond a cut-off 

distance xc, which may be arbitrarily large. Then the solution of equation (37) takes the 
form 

f ( x , a )  = ay(a)K, (ax)  for x z x, (72) 

as x + 03 
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with a coefficient y(a) whieh has the expansion 
y ( a )  = y(@ + y ( ' ) & h a  + y"a2 + O((a21na)2). (73) 

By comparison with equation (66) we see that beyond the cut-off distance 

where 

(77) 

= ' p  2 p '  (78) 

I JE = y - 5 - h2 = -0.61593. 

By comparison of equation (74) with equation (57) we find 

By substitution of expansion (66) in equation (57) we find that f (')(x) and f O ( x )  must 
satisfy 

.ex f'" = 0 Lx f'Z) = f(0). (79) 

(80) y( ' )  = -1 2 
16 4. 

By comparison of equation (75) with equation (71) we find 

The function f ( ' ) ( x )  is given everywhere by 

f" ' (x )=- {&, fO(x) .  

By substitution with equation (35) and use of equations (63) and (70) we find for the 
coefficient a!) 

ap -: pi. (82) 
It follows from equations (68), (77), and (82) that the amplitude C, of the long-time tail 
CL/T of the relaxation function is directly related to the amplitude of the long-range tail of 
the steady-state pair distribution. 

Next we consider the coefficient a:). Let h(x) be the solution of the inhomogeneous 
equation 

C x h  = f@) (83) 
which satisfies the boundary condition h'(l+) = 0 and which behaves as 

h ( x ) = i y @ ) x l n x + -  hi forx>x, .  
(84) 

X 

Then the solution f ( 2 ) ( x )  takes the form 
f"(x)  = h(x) + CO $AX). 

By comparison with equation (76) we find the coefficients 
(85) 

(86) 
ye) = h i  + $&CO 
CO = -1 (O) JE. 4 y  

By substitution of f ( 2 ) ( x )  into equation (35) we finally find the coefficient e:). 
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7. Coefficients for square-well potential 

The coefficients as(O), CL, and CM can be evaluated for the squarewell potential from the 
explicit expression for the coefficient rus(o) given in equations (52) and (53). However, it 
is simpler to use the formalism developed in the preceding section. 

Thus we consider again the potential u(r) given by equation (40), characterized by 
parameters E and XI defined in equation (41). For the reduced electric polarizability one 
finds 

B Cichocki and B U Felderhof 

( p  - I)(€ - 1 )  - 2 
PP = 4p (p - 1 ) ( E  - 1) + 2p (87) 

where p = xf. The integral defined in equation (65) is given by 

Js = 2 - 2(p - 1 ) ( ~  - 1). (88) 
Hence we find for the zerc-frequency coefficient us(0) by use of equation (63) 

(p  - I)*(€ - 1 ) 2  - (p  - I)(€ - 1) + 2p 
Lo - I)(€ - 1)  + 2p 

as(0) = -2 

The solution f (O)(x) is given explicitly by 

with coefficients 

A = 2  (P - - 1 )  B = A - 2 .  - 1) + 2P (P - 
The solution f '"(x) is given by equations (70) and (81). By use of equation (42) one 

The solution f @)(x )  is given by 
confirms the value given by equation (82) for U$). 

~ A x 3 + ~ B x L n x + C x + D / x  f o r l c x c x l  
(92) 

7 & [ x  hx + JEX] + E/* f 0 r X l  c x  

with additional coefficients 

(93) 
( E  - l ) F  + G +  H 

C =  D = C + F  E = p C + D - G  
(p - 1)(E - 1) + 2p 

The coefficient mf" is given by 

= E(A +zc - I) - ( E  - 1) [t g p ( ~ ~ +  l a x , )  + E ] .  (95) 
The coefficients CL and CM can now be calculated from equation (68). 

To give an impression of the dependence of the coefficients D;, CL, CM on the 
parameters E and p = x: we present several plots. In figure 4 we plot us(0) as a function of 
E for fixed p = 1.5. In figure 5 we plot rus(0) as a function of p for fixed E = 0.5. In figure 
6 we plot the coefficients CL and CM as functions of E for fixed x i  = 1.5. The peculiar 
behaviour near 6 = 2.6 is due to the vanishing of the reduced polarizability ,!Jp at this point. 
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P L 

Figure 5. Plot of the coefficient us(0) as a function of 
p for a semidilute dispersion of discs with squawstep 
interaction with height given by E = 0.5. 

Figure 6. Plot of the coefficients CL (full curve) and 
CM (dashed w e )  as functions of E for fixed X I  = 1.5 
for a semidilute dispersion of discs with square-well 
interaction. 

0.08, 

I I 
1 2 3 4 5 6 7 8  

P 

Fime 7. Plot of the coefficients CL (full curve) and 
log10 U 

Firmre 8. Plot of the spectral density ps(u) as a 
C, (dashed curve) as fuaetons of i f o r  fid 6 = 0.5. fundon of loglo U for xi- = 1.5 and E = 2.6 (full 

curve) and E = 3.5 (dashed cwve). 

A similar resonance behaviour occurs in the case of spheres, and we have commented on 
it in [IO]. In figure 7 we plot CL and CM as functions of p for fixed c = 0.5. 

In figure 8 we plot the spectral density ps(u), as given by equation (54). for X I  = 1.5 
and the values E = 2.6 and c = 3.5, corresponding to a square well with depth near the 
resonance shown in figure 6. For a repulsive potential the behaviour of the spectral density 
is much simpler, as discussed in the next section. 

8. Approximate relaxation fnnction 

The behaviour of the one-sided Fourier transform !&(o) of the relaxation function at low 
frequency is given by equation (18). It is characterized by the two diffusion coefficients 0: 
and Di, and by the two time scales tL and tM. The initial value of the relaxation function 
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is ps(0) = Di - Di. Hence the limiting behaviour at high frequency is also known. 
We construct an approximate expression for the transform rs (z ) ,  which incorporates the 
behaviour both at low and at high frequency, based on the exact expression for a semidilute 
suspension of hard discs. We demonstrate the validity of the approximation by comparing 
the approximate spectral density with the exact one for a semidilute suspension of hard 
discs with square-step interaction. 

The approximate expression for the Laplace transform rs(z) reads, in analogy to 
equation (46), 
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2CL KO(P4 
CL~2KOOw) + w K I W I  r S w  N 

where the factor f i  is related to the coefficient CM by 

f i  = (zcM)’” exp(-i y ) .  (97) 
This incorporates the low-frequency behaviour given by equations (18) and (22). and 
the high-frequency behaviour given by equation (25). The corresponding approximate 
expression for the s p a l  density is 

w i t h t J = J z ;  
We compare the approximate spectral density with the exact one for a semidilute 

suspension of hard discs with squamstep potential characterized by parameters E = 0.5, 
x ,  = 1.5. In  figure 9 we plot the two spectra as functions of log,, U. The values of the 
coefficients are CL = 1.6321, CM = 1.4155. ’Ibe plot shows that equation (98) provides 
an excellent approximation to the spectral density. In figure 10 we show the relaxation 
function ~ ( t ) .  as calculated from the exact and approximate spectra according to equation 
(20). The agreement is again excellent. 

We expect equation (96) to provide a good approximation to the actual relaxation 
function for systems of particles with repulsive potentials. The approximation is 
characterized by the two coefficients CL and CM. For systems with attractive interactions the 
spectral density is more complicated due to the appearance of an additional time scale, as can 
be shown on the example of a semidilute suspension with attractive squarewell potential. 
The approximate expression (96) corresponds to the evolution of the pair distribution 
function described by the two-particle diffusion equation with an effective diffusion constant 
and an effective hard-core radius. Leegwater ef a2 115, 161 have argued that the two- 
particle diffusive evolution should provide a good model for memory effects in dense fluids 
or suspensions. Thus we expect that the expression (96), with appropriate values of the 
coefficients CL and CM, describes the self-diffusion process at any concentration. 

9. Discussion 

We have shown that the selfdiffusion of interacting discs is characterized by a 
frequency-dependent self-diffusion coefficient with striking longtime memory effects. 
Correspondingly, the time-dependent mean square displacement of a selected disc behaves 
as shown in equation (8). The time scale ?L of the logarithmic correction to the asymptote 
depends on the nature of the interactions. For a semidilute suspension the time scale t~ is 
directly related to the amplitude of the long-range tail of the steady-state pair distribution 
function, as found from linear-response theory. 
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Figure 9. Plot of the spectral densily ps(u) as a 
fundion of log,, U for a semidilute suspension of discs 
with squarestep potential characterized by parameters 
6 = 0.5 and XI = I .5. We compare the exact spectral 
density given by equarion (54) (full curve) with the 
approxinwte spectral density given by equation (98) 
(dashed cluve). 

Figure 10. Plot of the relamion fundion ys(r), as 
a function of r = f/m, as calculated according to 
equalion (21) frotnthe exan spectraldensity (full clwe) 
and the approximate one (dashed curve) shown in figure 
9. 

The longtime behaviour of the mean square displacement is characterized in more detail 
by a second time scale TM. We have shown that the time scales T' and T~ may be used 
to construct an approximate expression for the relaxation function ys(z) characterizing the 
memory effects. A comparison with an exact calculation for a semidilute suspension of 
hard discs interacting with an additional square potential shows that the approximation is 
excellent if the interaction potential is repulsive. In the approximation the mean square 
displacement is characterized by the short-time and long-time diffusion coefficients Dg and 
Di, and by the two time scales rL and rM. We expect that the approximation provides 
an accurate description of the self-diffusion of particles with repulsive interactions at any 
concentration. The description should be valid over a wide time range, excluding only very 
short times. We suggest that the approximation be used to analyse computer simulations 
and experimental data. 

The parameters of the approximation may be calculated from the steady state-distribution 
function, if a diffusion-type equation is assumed for the time evolution of the pair distribution 
[15, 161, by use of the formalism developed in section 6. The approximation should also 
be applicable in the presence of hydrodynamic interactions. The formalism of section 6 can 
he extended to include this case. 
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